

→ Anna Godfrey | USACE Savannah District |
Anna.D.Godfrey@usace.army.mil, 912-652-5374
Tom Gillespie | GHD | tom.gillespie@ghd.com,
912-235-6725

Atlantic Intracoastal Waterway (AIWW) Sediment sampling & analysis

→ FSBPA 35th National Conference on Beach Preservation Technology Feb 03, 2022

Melcome

> Agenda

Background

Introduction to project team

Field Activities

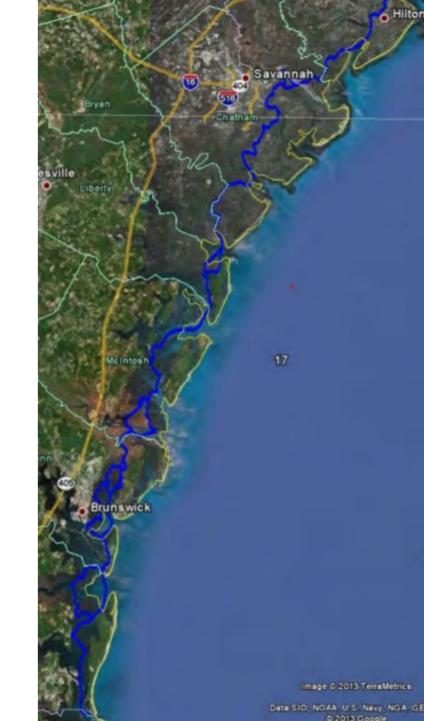
- Scope and objective
- Spatial extent and sample locations
- Equipment and methods

Post-Sampling Analysis

- Geological inspection and core logging
- Chemical analysis
- Geotechnical analysis of physical samples

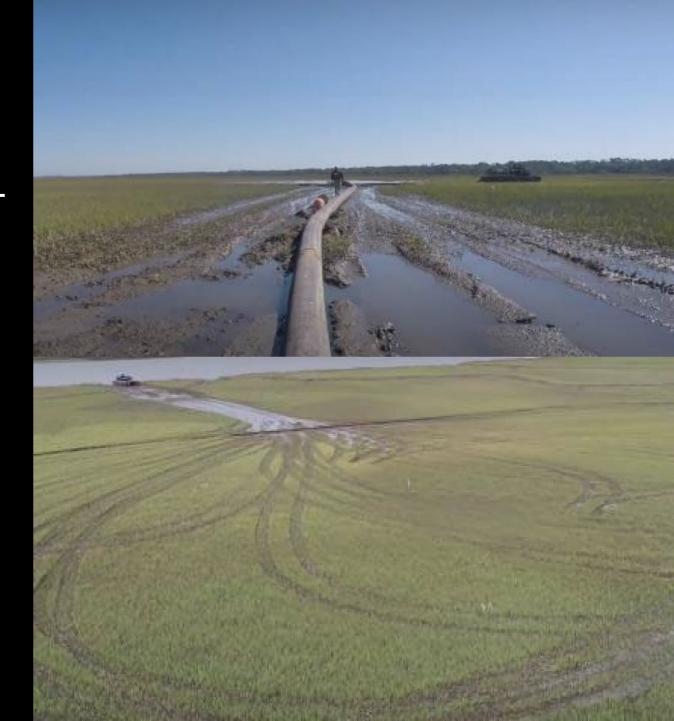
Application

- Altamaha Sound Bird Island
- Future dredging cycles

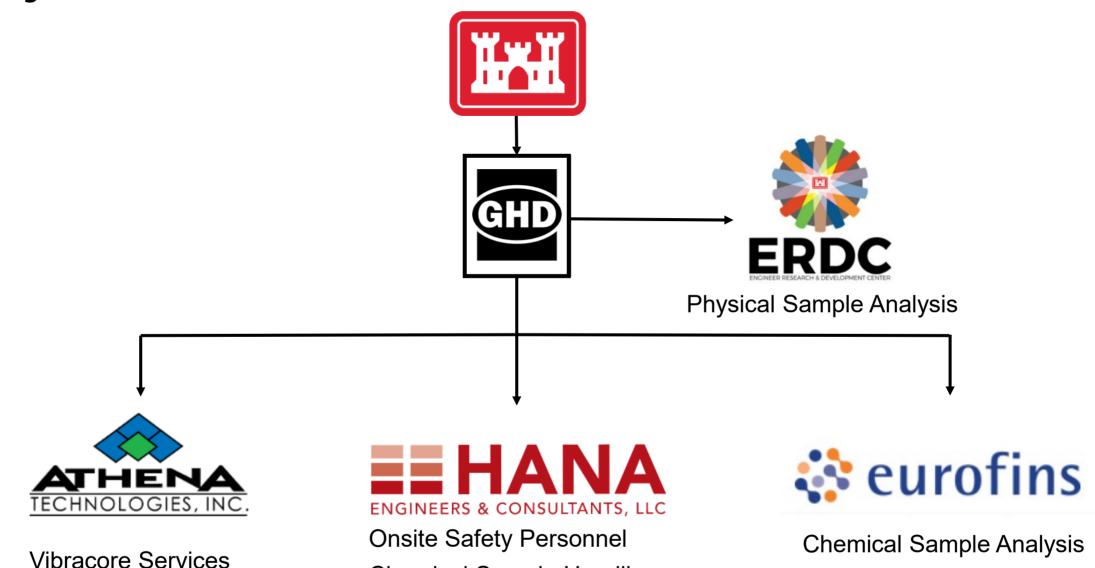

AIWW and USACE Responsibility

Savannah District:

- 161 miles of shallow draft channel from Port Royal Sound, SC to Cumberland Sound, GA
- Authorized depth is -12 ft MLLW
- Commercial and recreational benefits
- Required to monitor and maintain depth


Recent AIWW maintenance dredging:

- FY 2010 Florida Passage, Buttermilk and Altamaha Sounds, and Fields Cut
- FY 2019 Jekyll Creek, Buttermilk Sound, Hell Gate, Fields Cut. Included a successful beneficial reuse pilot project in Jekyll Creek
- FY 2021 Elba Cut and Altamaha Sound

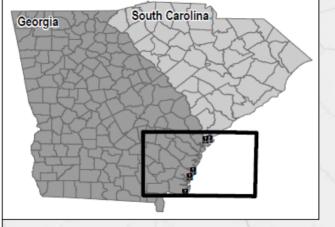


Scope and Objective

- Objective
 - Inform the development of a Dredge Material Management Plan (DMMP) future maintenance dredging and beneficial reuse
- Scope of Effort
 - Sediment capture via vibracore
 - 10-ft cores with at least 80% recovery (8-ft) OR best core out of 3 attempts
 - 5-gallon bucket physical sample
 - Geological investigation and reporting
 - Chemical analysis of a subset of collected samples

Project Team

Chemical Sample Handling


Geological Logging

Project team

Spatial Extent & Sample Locations

Center Ramshorn Creek Southend Ramshorn Creek Northend Fields Cut Southend Fields Cut Southend Flha Cur

Northand Hall Gate DM 86

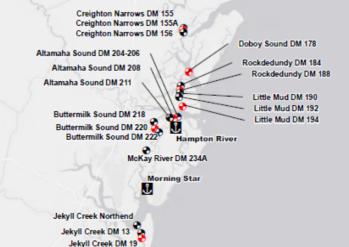
Florida Passage DM 1020

		-	The same
te.			
5000			

Cumberland Dividings DM 60

Cumberland Sound DM 75

Kings Bay Cumberland Sound RG



30.82145546 -81.4915

30.79622862 -81.4902

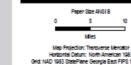
33 Cumberland Sound RG

34 Cumberland Sound DM 75

- 34 Total Sample Locations across ~161 miles of the AIWW

Legend

Marinas


Sediment Sample

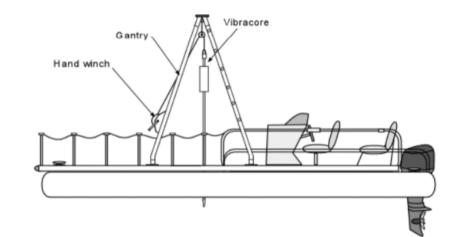
Location Sediment Sample

Location with

Chemical Analysis

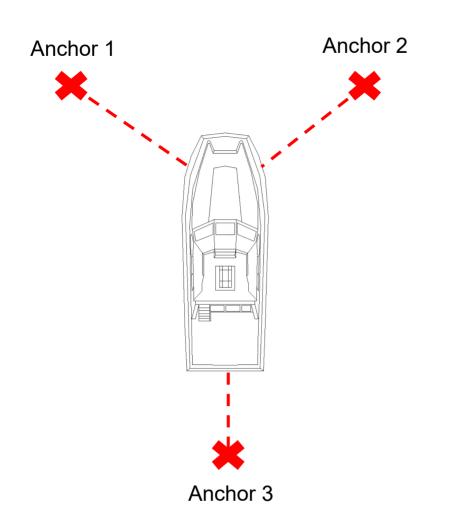
- 9 Chemical Sample Locations (red)

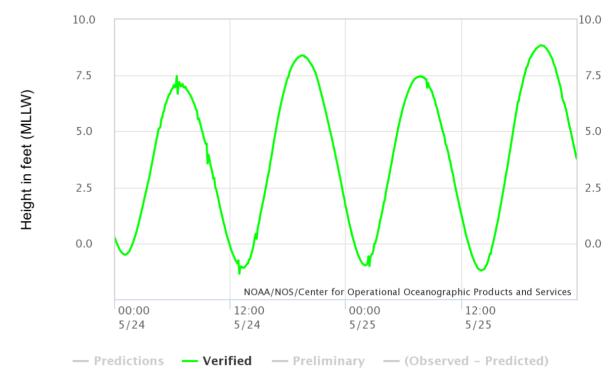
ATLANTIC INTRACOASTAL WATERWAY


Revision No. Date May 5, 2021

SEDIMENT SAMPLE AND MARINA LOCATIONS

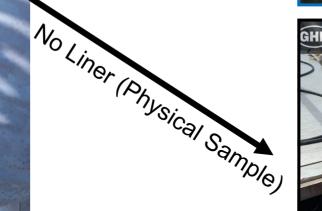
FIGURE 1

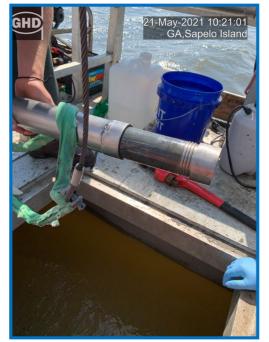

Equipment and Methods



Equipment and Methods

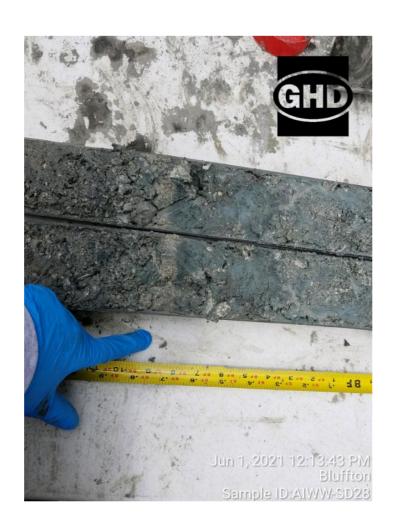
NOAA/NOS/CO-OPS Observed Water Levels at 8670870, Fort Pulaski GA From 2021/05/24 00:00 LST/LDT to 2021/05/25 23:59 LST/LDT




- Large tidal range along coastal GA = strong currents
- 3-point anchor system for station keeping
- Average positional offset from provided sample coordinate <6ft

Equipment and Methods

Equipment and Methods – Chemical samples



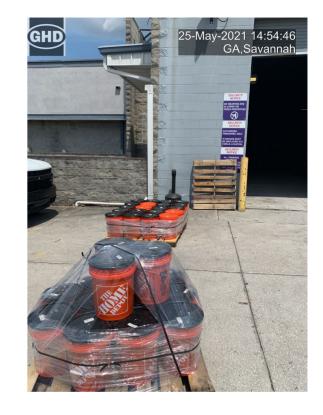
Post-Sampling - Geological Investigation and Logging Logging Logging

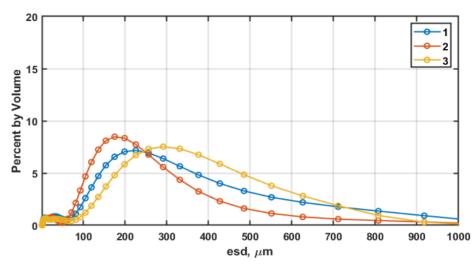
- Cores split longitudinally and characteristics inspected
- Typical items of interest may include:
 - Debris
 - Shell/wood
 - Evidence of contamination
 - Depth layering

ENGINEERS &	Hana Engineers & Consultants, 7501 Boulder View Drive, Suite Richmond, VA 23225	LLC 620			BORING NUMBER SD2
CLIENT USACE	Savannah District	PROJEC	TNAME	AIW	W Vibracores W912HN21F2011
PROJECT NUMB	ER 11226962 - Atlantic Intercoastal Waterway (AIWW				
DATE STARTED	5/20/21 COMPLETED 5/20/21	GROUND	ELEVA	0 ft HOLE SIZE n/a	
DRILLING CONTR	RACTOR Athena Technologies, Inc.	GROUND) WATER	LEVE	LS:
DRILLING METH	OD Vibracore				LING
DRILLER <u>n/a</u>	LOGGED BY M. Casey				LING _—
NOTES Location	n: #28 McKay River DM 234A. Depth of water: 12.6 ft	AF	TER DRI	LLING	
ODEPTH FROM O MUDLINE, (ft) O ELEV O (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY %	REMARKS
25 -25	Alternating dark gray silty to clayey SAND (SP-SC/f grayish-brown fine SAND to signity silty fine SAND (SP/SP-SM) (heterolithic deposits) With some wood	M) to			Vertical elevation is referenced to the mudline. Horizontal coordinates (GA East 1001 State Plane): EASTING (X): 880388.75 NORTHING (Y): 454432.42 Start time: 0900 hrs
5.0 -5.0 5.5	Greenish-gray sandy CLAY (CL) Dark gray sandy CLAY (CL)		vc	98	
7.5 -7.5	Pale green to green and greenish-gray, sandy CLA's with some to abundant shell and CLAY seams increshell content with depth	(CL) asing			
	Dark greenish-gray silty CLAY with dark gray SAND (SP-SC) (heterolithic deposit)	seam			End time: 0910 hrs Approx. penetration depth: 11 ft
	Bottom of borehole at 11.0 feet.		_		

Post-Sampling - Chemical Analysis

- Nine chemical samples
- Samples were analyzed for:
 - Metals
 - Polychlorinated Biphenyls (PCB)
 - Organochlorine Pesticides
 - Polyaromatic Hydrocarbons (PAH)
- Exceedance of Groundwater SSL thresholds for metal content, one exceedance for PCB's
- One ESV exceedance for arsenic naturally occurring, common for marine sediments in the southeast


Parameters Se	ESVs for Marine Sediment (a)	EPA RSLs for Protection of GW SSLs (b)	Units	SD8	SD10	SD14	SD16	SD18	SD21	SD23	SD26	SD31
	(-/			05/23/21	05/24/21	05/22/21	05/21/21	05/21/21	05/21/21	05/20/21	05/20/21	05/19/21
Aluminum	-	3000	mg/kg	14000 ^b	14000 ^b	23000ь	3100 ^b	4400b	23000ь	600	15000⁵	25000b
Antimony	2	0.27	mg/kg	0.075 J	0.068 J	0.098 J	0.13 U	0.14 U	0.13 J	0.12 U	0.068 J	0.12 J
Arsenic	7.24	0.29	mg/kg	6.5 ^b	11 ^{ab}	14 ^{ab}	2.2 ^b	3.2 ^b	13 ^{ab}	0.93 ^b	4.7 ^b	18 ^{ab}
Barium		82	mg/kg	20	20	30	5.3	6.3	38	4.4	27	31
Beryllium		3.2	mg/kg	0.55	0.83	1.2	0.21	0.27	1.3	0.066	0.56	1.4
Cadmium	0.68	0.38	mg/kg	0.087	0.080 J	0.10 J	0.048 J	0.018 J	0.14	0.059 U	0.025 J	0.14 J
Chromium	52.3	180000	mg/kg	33	27	37	5.6	7.1	34	1.9	13	43
Cobalt	-	0.027	mg/kg	3.2 ^b	4.3b	6.0 ^b	0.86 ^b	1.5 ^b	8.1 ^b	0.58b	4.1 ^b	6.6b
Copper	18.7	46	mg/kg	9.7	5.9	9.2	1.0	1.9	11	0.26	7.1	12
Iron		35	mg/kg	15000b	17000b	24000ь	3800b	5600b	24000 ^b	1600b	13000 ^b	27000b
Lead	30.2	14	mg/kg	14	12	17 ^b	2.5	3.2	17b	0.72	8.1	20b
Lithium	-	1.2	mg/kg	19 ^b	24 ^b	38 ^b	4.5 ^b	6.8 ^b	34 ^b	0.94	18 ^b	41 ^b
Manganese	-	2.8	mg/kg	130 ^b	330 ^b	260 ^b	37 ^b	72 ^b	640 ^b	23 ^b	370ь	590 ^b
Mercury	0.13	0.1	mg/kg	0.042	0.044	0.045 J	0.019 U	0.020 U	0.063	0.018 U	0.018 J	0.097
Nickel	15.9	2.6	mg/kg	6.3b	7.5 ^b	11 ^b	1.4	2.1	11 ^b	0.58	5.9 ^b	13 ^b
Selenium	-	0.26	mg/kg	0.25 J	0.39 ↓₺	0.50 ₺	0.32 U	0.11 J	0.57 🙏	0.29 U	0.19 J	0.65 ქხ
Silver	0.73	0.08	mg/kg	0.057 J	0.037 J	0.045 J	0.063 U	0.068 U	0.073 J	0.059 U	0.073 U	0.066 J
Thallium	-	0.14	mg/kg	0.13	0.14	0.21 ^b	0.046 J	0.068 U	0.21 ^b	0.059 U	0.15 ^b	0.22b
Vanadium	-	8.6	mg/kg	52 ^b	36 ^b	49 ^b	6.9	11 ^b	56 ^b	2.0	28 ^b	61 ^b
Zinc	124	37	mg/kg	35	33	47 ^b	7.5	11	66 ^b	3.0	22	63 ^b


Chemical analysis - Metals

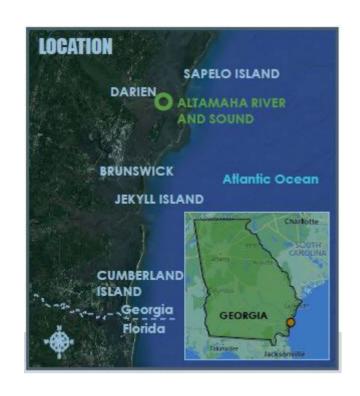
ESVs for Marine Sediment (a)	Marine	EPA RSLs for Protection of	Units	SD8	SD10	SD14	SD16	SD18	SD21	SD23	SD26	SD31
	GW SSLs (b)		05/23/21	05/24/21	05/22/21	05/21/21	05/21/21	05/21/21	05/20/21	05/20/21	05/19/21	
Aroclor-1016 (PCB-1016)		0.013	mg/kg	0.00059 U	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U
Aroclor-1221 (PCB-1221)	-	0.00008	mg/kg	0.00059 U	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U
Aroclor-1232 (PCB-1232)	-	0.00008	mg/kg	0.00059 U	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U
Aroclor-1242 (PCB-1242)	-	0.0012	mg/kg	0.00059 U	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U
Aroclor-1248 (PCB-1248)	-	0.0012	mg/kg	0.0036b	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U
Aroclor-1254 (PCB-1254)	-	0.002	mg/kg	0.00059 U	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U
Aroclor-1260 (PCB-1260)		0.0055	mg/kg	0.00059 U	0.0011 U	0.0012 U	0.00054 U	0.00058 U	0.0011 U	0.00050 U	0.00061 U	0.0013 U

Post-Sampling – Physical Analysis

- All 34 physical sediment samples were shipped to ERDC in Vicksburg, MS
- Samples were analyzed for:
 - Plasticity index
 - Organic content
 - Water content and bulk density
 - Grain size
- Results included in final GHD report

Summary

- 34 vibracores, 34 physical samples, and 9 chemical samples collected along 161 miles of the AIWW
- Significant spatial variability of the sediments
- Several locations >98% sand content, low organics, suitable median grain size ->
 - potential beach nourishment reuse
- Multiple locations contained pluff mud (finegrained, high organics)
 - potential reuse via thin layer placement, bird island construction



Video – AlWW Vibracoring

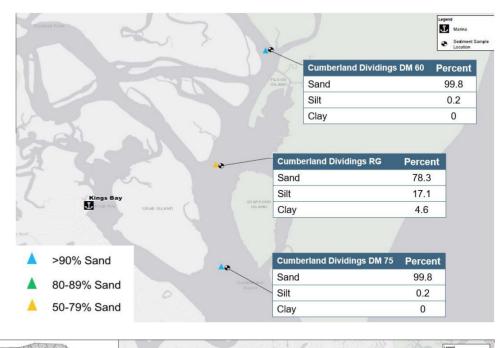
Application

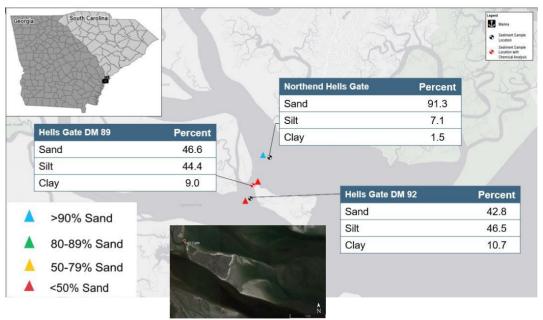
Shorebird Nesting Habitat

- Open water, unconfined placement creating
 13.2 acre nesting habitat
- Existing tidal mudflat in shallow water
- Recent hurricanes have reduced offshore bars

Sediment Behavior

- Formation of mud aggregates during dredging and placement
- Sediment is less likely to be dispersed throughout the system
- Increases feasibility to use sediment in island construction projects





Future Dredging Cycles

- Beneficial Use opportunities at Cumberland Sound
 - National Park Service uses dredged material to maintain roads
- Potential Open Water
 Placement Site at Hell's Gate

Video – Altamaha Bird Island

Thana you